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Abstract

The project is to build a model to predict the identities of the werewolves in the

game of The Werewolves of Millers Hollow, aimed for future incorporation in an

AI player program. The corpus data comes from the transcription of Chinese

TV show Pandakill where 12 players are divided into 4 werewolves, 4 ordinary

villagers and 4 divine villagers. The game has several speech and reaction turns

until all the werewolves are eliminated, or either all the ordinary villagers or

all the divine villagers are eliminated by werewolves. We assume that our AI

plays as an ordinary villager to analyze all the speeches and behaviors before

its reaction. The speech analysis is composed of 2 steps: the classification of

the intent of a single sentence, and the summarizing of sentence meaning and

player attitude in a speech turn. The first step is implemented with one of

several machine learning and deep learning methods such as Multinomial naive

Bayes, logistic regression, Linear support vector machine and Long Short Term

Memory model in recurrent neural network; those methods are compared to

each other. The second step, along with the behavior analysis part, is built by

hand-crafted rules, which in the end gives a most probable Werewolf Team for

each game turn.
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1 Introduction

TheWerewolves of Millers Hollow (French: Les Loups-arous de Thiercelieux)1

is a role-playing game created by French authors Philippe des Pallières and

Hervé Marly that can be played with 8 to 47 players. The game is based on the

Russian game Mafia2. It was nominated for the 2003 Spiel des Jahres award.

There are numerous variants and extensions of the Werewolves game. Since

its introduction in China, this game gained a lot of traction there. The unique

entertainment and television system in the country has been a fertile ground

for many television programs and internet streams where famous stars and web

video bloggers play this game, which again, brings it more popularity and vari-

ants. In particular, we will refer in our project to the TV show Pandakill3 to

set game rules and retrieve corpus data.

All the variants share the same few basic principles4. One of the players

serves as the Moderator and the others sit in a circle. The Moderator randomly

assign the other players a role, and with each role comes predefined abilities.

The roles are kept secret and unchangeable during the whole game. Then the

game plays out during cycles of night (when players act) and day (when players

discuss and act). There are always two groups of characters : the villagers, some

of whom have special abilities (the divine villagers), and the werewolves who kill

together a player each night. The goal of the villagers is to find and eliminate

all the werewolves by voting for a suspicious player to be executed each day or

by using the special abilities of the divine villagers. Similarly, the goal of the

werewolves is to eliminate the villagers ; in the "all-to-kill" variant, all villagers

have to be killed, while in the "part-to-kill" variant, the wolves need only to kill

either all the divine villagers or all the ordinary villagers.

As is the case in the ancestor Mafia game, most of the gameplay revolves

around deceit : werewolves need to hide undetected among the players to avoid
1https://en.wikipedia.org/wiki/The_Werewolves_of_Millers_Hollow
2https://en.wikipedia.org/wiki/Mafia_(party_game)
3https://zh.wikipedia.org/wiki/Panda_Kill
4For more details, see complete game rules in section 1.3
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execution during the daily trials. Villagers also gain some interest in concealing

their identity, especially the more powerful divine villagers who are targets of

value for werewolves. Also, in the part-to-kill variant, it can also help to waste

the werewolves’ killing between ordinary and divine villagers.

Our motivation will be to write a chatbot that can serve as an AI player

in this game (other than the moderator). Such a program can be decomposed

into three parts: speech-to-text, then comprehension of the situation (identities

of the other players, how they interact) from the text input, then response

generation. In this work, for more simplicity, we would first want it to perform

as an extra player out of the original 12 players with a right to observe all

information in the game, who will play probably as an ordinary villager in the

future and whose position in every speech turn is the last. Additionally, we will

focus on the second part, in particular to have a basic understanding of what

the players say and guess who the wolves are.

1.1 Project design

The Werewolf’s game is a dynamic game with imperfect information: it has

several turns and in each turn the players get more information, and they could

give different reactions. In order to achieve our goal, we decompose the infor-

mation into two parts: the speech part and the behavior part. The advantage is

that we can process the speech part independently from the game’s procedure.

Then we add the behavior features to make more logical analysis.

The project is designed in three steps: classification of a single sentence’s

intent, inference of the relationships between the players, and prediction of

players’ identities. More precisely, we first classify sentences into basic labels

like "attack" (when it accuses a player), "protect", "defense", etc. Then, from

this information, we try to describe globally who attacks whom and who protects

whom. Finally we guess who the wolves are. The first two steps rely on the

speech, and the third uses behavior.

The first step consists in a classical text classification problem. We use and
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compare several machine learning algorithms to classify the sentence meaning.

We have basically two ideas of how to represent the sentence, by a traditional

Bag-of-Words theory without considering the context features or by the word

embedding with a recurrent neural network which takes context in consideration.

The second step of finding "who attacks whom" asks for the dependency

parsing of a sentence. We will use the library HanLP to parse the dependency

structure of Chinese sentence. We then reunite these information to make an

extraction of the meaning of an entire speech turn of each player.

The last step of the deduction of "who is the werewolf" is based on all the

information given by the previous steps, plus the behavior information. Due to

the limited quantity of data, we will not use machine learning methods but just

a logic induction.

1.2 State of the Art

Since the beginning of modern computing, chatbots have been envisioned as

the face of artificial general intelligence, and a functional example was first pro-

duced in 1966 with Joseph Weizenbaum’s ELIZA [Weizenbaum, 1966]. The fa-

mous Turing test proposed in 1950 already aimed at evaluating the performance

of such conversational programs. Today, chatbot have found applications well

beyond general conversational agents, with some serving as personal assistants

in smartphones and home speakers, and others specializing to specific contexts

such as customer service.

The dominant paradigm since the beginning of the history of chatbots has

been to choose the output (the response) among a finite number of possible

response templates : this is the information retrieval paradigm. It ensures that

the responses have the highest grammatical quality.

The first implementations of the retrieval based model, starting with ELIZA,

are ruled-based systems: the program analyzes the keywords in the user in-

put and chooses the response based on them, using hand-crafted rules. This

method has been the dominant one for decades, with a notable example being
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Richard Wallace’s ALICE5, a 1995 general conversational chatbot that relies

on a database of thousands of rules. As of today, rule-based systems are still

competitive enough to be widely used in some industries. For instance, many

products of customer service chatbots are designed this way6.

More recently, advances in computing power and data collection have en-

abled new techniques that use machine learning to bypass the crafting of compli-

cated rules. Typically, simple models using logistic regression or support vector

machines can carry tasks such as sentiment analysis, or classifying between state-

ments, open questions, closed questions, answers, etc. Recent applications in-

clude medical interviewer bots designed for diagnosis support [DeVault et al., 2014].

In situations where the space of possible responses is more limited, such as FAQ

customer service, classifiers can also be implemented to carry the whole task.

The features used in those models generally involve the words of the input,

such as bag-of-words or n-grams. Words can then be encoded discretely, i.e. as

vectors whose dimension is the size of the vocabulary.

Recent developments using small neural networks have also allowed for better

word embedding, considerably reducing the dimension. Those embedding are

typically based on a predictive model for words in a sentence, using simple

discrete features as CBOW and skip-grams [Mikolov et al., 2013], and each word

is mapped to the corresponding trained parameters of the model. State-of-the-

art word embedding word2vec [Mikolov et al., 2013] also mysteriously gets new

semantic properties. For example, a reasoning such as "X is to ’woman’ what

’king’ is to ’man’" can be translated into the vectorial equation "king−man+

woman = X", and the result X using word2vec is closest to the embedding of

"queen"; similarly, Paris− France+Germany = Berlin".

Those word embeddings have notably been leveraged by the latest technique

in machine learning, using deep learning to achieve top-grade results. For exam-

ple, Google rolled out a Smart Reply feature on the world’s most popular email

platform with great success, using neural networks to predict possible responses
5https://en.wikipedia.org/wiki/Artificial_Linguistic_Internet_Computer_Entity
6http://southpigalle.io
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given an email as input [Kannan et al., 2016].

More impressively, deep learning has allowed to break free from the informa-

tion retrieval paradigm, building generational models that allow for infinitely

more diverse responses while keeping an acceptable grammatical level. The

Sequence to Sequence model [Sutskever et al., 2014] is an example of program

that builds its own responses word by words (output sequence) given an input

sequence, and it can been applied for example to social media manager chatbots

[Xu et al., 2017]. Actually, Google’s Smart Reply is also based on Sequence to

Sequence, although it maps the output sequence to its nearest neighbour among

a set of possible responses, to keep the highest grammatical quality provided by

the information retrieval paradigm. Generational models can also consider sen-

tences as a whole as opposed to the word-centric Sequence-to-Sequence, drawing

on Statistical Machine Translation [Ritter et al., 2011].

In our project, we focus on an approach based on the information retrieval

paradigm. Due to the specific nature of the task, namely develop an AI player in

a game, it would be best suited to follow the steps of the first implementations

of machine learning in chatbot design history (c.f. above). That is to say, we

will make use of classical machine learning algorithms (naive Bayes, logistic

regression, support vector machine) and deep learning architectures (LSTM) to

develop classifiers for text comprehension and to further help analyze the inputs

from the other players.

1.3 Werewolf game rules

The game of Werewolf is a role-playing turn-based game. One player, the

Moderator, stays out of the game and ensures the good development of the

events, in particular by keeping track of the players’ status and by telling each

player in time what they have to do.

The game unfolds in alternating day turns and night turns starting with the

night. During the night, players act using their special abilities. During the

day, a player is executed ; before the execution, players talk one by one then a
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vote is cast to decide which player is to be executed. This will all be explained

in more details in section 1.3.b

Although the original game is invented by two French gamers, the game

has developed a lot after being introduced in China. Nowadays, the game in

France is more like an entertaining party game while in China people tend to

play it more seriously. For example, the game in the French official web page7

allows players to play online, in text, and discussion during the game. But in

China, all the discussions are forbidden, players can only speak when it comes

to his speech turn. Since our data refers to the professional game of Werewolf in

the TV show "Pandakill", we will take their rules and role parameters as ours,

instead of the original French version.

1.3.a Roles

All the players except the Moderator are assigned a role (their identity),

that is only revealed to the others at the end of the game. We list the different

roles with the special abilities that gift them:

Werewolf During each night turn, the werewolves collectively kill one player

of their choice. During a day turn, a werewolf can also choose to suicide;

this has the effect of eliminating himself and stopping the day turn (so

that the next night turn starts immediately).

White wolf The White wolf is the same as a werewolf with the additional

ability that when he suicides, he can target one player of his choice who

will also immediately die.

Ordinary villager Ordinary villagers do not have any special ability.

Seer During each night turn, the Seer can choose one player and see whether

he is a werewolf or not.

Witch The Witch has two bottles of potion, one poison and one antidote.

They are to be used during night turns: the poison kills one person of the
7https://www.loups-garous-en-ligne.com
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Witch’s choice, and the antidote can revive the player that was killed by

the wolves during the same night. Both potions can only be used once,

can not use both in the same night, and can only use the antidote on

herself during the first night.

Ancient During each night, the Ancient can choose one player; this player will

be barred from speaking during the next day, and will only be allowed to

communicate with gestures.

Assassin Each night turn, if the Assassin’s execution vote the previous day

was not in the majority, then he can decide to unilaterally kill the person

he voted for to be executed, or not.

Hunter The Hunter has a gun. If during a night turn he is the target of the

wolves and the Witch does not save him, or if he is executed during a day,

he can shoot one player of his choice, who then dies.

Idiot If the Idiot is executed during a day, he dies but keeps participation in the

game as a ghost. During subsequent days, he can interrupt other players’

speeches three times per day.

Savior Each night, the Savior can choose a player (including himself) to protect

from the wolves (but not from the Witch). This ability can not be used

on the same player two consecutive nights.

Werewolves and the White wolf form the Wolf team. The other players form

the Villager team. Among the Villagers, we distinguish the ordinary villagers

from the others, which we call divine villagers.

1.3.b Mechanics

The two teams (Werewolf and Villager) compete for victory. The villagers

win when all the werewolves have been eliminated (i.e. either by the day-time

executions, either at night). The wolves’ victory conditions depend on the game

variant. In the "all-to-kill" variant, they win when all the villagers (divine or
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ordinary) have been eliminated. In the "part-to-kill" variant, they win when

either all the ordinary villagers or all the divine villagers have been eliminated.

As we explained in the introduction of this section, the game is played in

alternating night and day turns, starting with the night.

During the night turns, the Moderator calls all players (except the ordinary

villagers) one by one to act according to their special abilities. The wolves are

called together, so they have the advantage of knowing which players are in

their team.

During the day turns, the Moderator starts by announcing the players who

have died in the previous night, then the players speak one by one. The pur-

pose of these speeches is to explain guesses about the players’ identities; when

all players have spoken, a vote is cast to execute one player. Afterwards the

executed player can speak once more, then he is eliminated (if this player is the

Hunter, his target also gets to speak once more). This closes the day turn, and

the following night starts.

There is a special rule for the first day: after the Moderator announces the

fatalities (if any) of the first night, the eliminated players can choose to speak

before exiting the game, then the round of speeches starts for the remaining

players.

Also, at any time during a day turn, a wolf may choose to "suicide by

explosion". This has the effect of eliminating himself and of interrupting the

turn, so the game directly proceeds to the following night turn (without the

remaining speeches and execution).

Strategically, the wolves will try to deceive the villagers during the day-

time speeches. Conversely, in part-to-kill games, villagers can also gain interest

in deceiving the others, since it makes it harder for the wolves to distinguish

ordinary from divine villagers.

The games in our corpus follow three variants:

1. 4 werewolves, 4 ordinary villagers, one Seer, one Witch, one Ancient, one

Assassin; part-to-kill.
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2. 4 werewolves, 4 ordinary villagers, one Seer, one Witch, one Hunter, one

Idiot; part-to-kill.

3. 3 werewolves, 1 White wolf 4 ordinary villagers, one Seer, one Witch, one

Hunter, one Savior; part-to-kill.

The Captain There is one more mechanism to the game that we have not

explained yet. In order to reduce ties in the execution vote, one player is assigned

1.5 votes. He will be called the Captain.

The Captain is chosen by a vote right before the beginning of the first day,

before the Moderator even announces the fatalities of the first night (so all the

players are still participating). All the candidates to the position get to speak

one by one (in an order randomly decided by the Moderator). Some candidates

may quit the election. Afterwards all the non-candidate (excluding candidates

that quit) players vote. In the event of a tie (commonly called ’PK’ in Chinese),

the tied candidates get to speak once more, and all the other players (previous

candidates or not) vote. If the vote is still tied, all the players except the

remaining tied candidates speak, then those players vote. If there is still a tie,

then no Captain is chosen for the game. The first day then proceeds normally

(starting with the Moderator review of the first night).

In the event that a wolf "suicides by explosion" the first day before a Captain

is elected, then the vote is cast right before the beginning of the second day

without the remaining speeches (and if there is a tie, the process continues

normally).

When the Captain dies, he can immediately choose a successor (if he died

during the night, the succession happens right after the moderator announce-

ment at the start of the following day). He can also choose to "tear his badge",

i.e. not designate any successor, in which case there is no Captain anymore.

Strategically, the villagers will want to elect the Seer as Captain, so that

in the (likely) event of death, the successor most likely stays in the villager

team. Some villagers may be candidate to get some speech time, but they will
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typically quit before the vote. The wolves will of course also try to get one of

them elected.

2 Speech processing

In this part, we will firstly explore the data by introducing the original corpus

and explaining how we annotated it, then by giving some statistics of the corpus.

Secondly we will explain how we classified the intent of a single sentence, with

the representation of Tf-idf which considers a sentence like a bag-of-word and the

representation of word-embedding which takes the context into consideration.

For the first part with Tf-idf, we will use classical machine learning methods

and in the second part, we will use a recurrent neural network with LSTM.

Finally we will add the syntaxical features to retrieve the subject and object

of the sentence, in expectation of making summarising a player’s speech turn.

2.1 Data exploration

2.1.a Corpus and annotation

Here we will explain more details about the corpus and the annotation, along

with the different processing of the speech and behavior parts.

The corpus is collected from the Chinese TV show Pandakill, so the rules are

also based on Pandakill variants. The subtitles are written down and arranged

in order. Since the subtitles are what the players speak, we deleted some oral

words and made slight modifications to the incorrect grammar.

About how to take down the subtitles of the TV show, first the subtitles are

hard written into the video, so there is no subtitle file that could be downloaded.

We then tried to contact the producer of the TV program, or some online

platform to process the speech to text task like IBM Watson8, Google Cloud9,

and Chinese specific platform IFlyTek10, it turned out that the manual notation
8https://www.ibm.com/watson/services/speech-to-text/
9https://cloud.google.com/speech-to-text/

10https://www.xfyun.cn/
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is the most convenient and high quality way. We then separate the text into

paragraphs of every player’s speech turns with their player number. Since the

text is from oral language, there might be very long sentences. For the further

concern of annotation, we separated the long sentences into short sentences to

keep each one a complete and clear sense as possible.

Since the corpus comes from the TV show, all the players play more profes-

sionally than in a standard leisure game with a group of friends. They are all

clear about the game rules and strategies; they develop the logic well and always

have a lot to analyze. However this level of professionality also has drawbacks.

The number of players is 12 and the complexity of everyone’s speech and logic is

improved. For instance, they often use reasoning by contraposition, like "if P2

was really the werewolf, he would not have used this strategy to expose himself".

Due to the complexity of text and the length of a speech, parsing the sen-

tences directly becomes very complicated. To predict a player’s character di-

rectly by his speech and behavior in several turns is therefore unrealistic, unless

we have access to a giant corpus with thousands of recorded and annotated

games, in which case the Deep Learning methods might be useful. Since we

only recorded 9 games, we have to divide the work into little pieces. A basic

idea is to first analyze each sentence or each two sentences separately. Then we

analyze the whole speech of a player in one turn. The ideal is to finally make a

configuration of the probability distribution of characters for each player. Before

getting that far, we first make a configuration of the situation of battle based on

the speech and behavior of all players in a turn. Relying on these information

and features, we might predict the character of each player.

The original 9 data files use 3 game variants, with 3 files for each variant.

They are pure text files and each records a whole game, including the game

rule, the announcement of the Moderator and the statements of players. As

what we can see below in a little extract of the file, the first paragraph is the

announcement of the Moderator:

游戏开始。天黑请闭眼。天亮了，现在进行警长竞选。将要竞选
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警长的玩家。请举手。1号，2号，5号，9号，12号共五名玩家参与

竞选。从2号玩家开始发言。

which means, in English:

"Night falls. Day comes. Now begins the captain election. The

electors please raise your hand. P1, P2, P5, P9, P12 in total 5

players participate in the election. Please give your election speech,

start from P2."

Then comes the first statement by a player (here P2), the format is as below:

P2:Name_of_the_player:Statements:Character

For convenience’s sake, we replaced the Name_of_the_player by his player

number. Also, Chinese numbers appearing before the character 号 were re-

placed by their Arabic counterpart, for example "二号" becomes "P2". We also

annotated the real identity (the role) of the speaking player at the end of the

paragraph.

2号:2号:预言家先说一下警徽流，警徽流先验7号7号，再验5号5

号。呃昨天晚上我查的是12号，12号他是我的金水。过。:狼

In English, this is:

"P2:P2:I, the Seer, will first give my order of succession as Cap-

tain (jinghuiliu) - first to verify (yan) P7, then P5. Last night I

checked P12, and he is a good identity (jinshui). Over.:Werewolf"

We will consider the game information as two parts. One is the speech, or

the so called statement part, which includes all players’ speech turn. Another is

the behavior part, which record the votes and the death status, etc. The main

part of this paper is the speech text processing and understanding, with in the

end some behavior or logic added for the analysis of character. The speech part

is retrieved in csv format while the behavior part is noted in json format.

Here we show an extract of the data form in csv format. The column

"episode" is the episode number of the game in the TV show Pandakill. The
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column "timestamp" represents the turn name in the game, for example "cap-

tain_election", "night1_lastwords", "day1_speech", "day1_lastwords", etc.

More details are explained in section 1.3 in the game’s rule. The column "player"

represents the player number of the speaking person, while "speech" is what he

says. Note that we split a speech turn of one player on smaller sentences, each

of them contains a basic meaning unit, which we call "intent", and which is the

very last column of the table. The column "character", as already annotated in

the original pure text file, is the player’s identity.

We translate the first row of the table below:

S1E601 : captain_election : P1: Me, the Seer : Ordinary villager : defense

episode timestamp player speech character intent

0 S1E601 captain_election 1号 1号预言家。 民 defense

1 S1E601 captain_election 1号 昨天晚上查杀是5号牌。 民 attack

2 S1E601 captain_election 1号

我的警徽流先验9号这

张牌，帮大家正一正场

上的风气，如果是查杀

的话就直接走掉了。

民 to_check

3 S1E601 captain_election 1号

然后再验呢，再验3号

这张牌，3号最近进步

太大了，好吧。

民 to_check

4 S1E601 captain_election 1号

我觉得你们都是一个水

平线的玩家，我先验9

再验3。

民 to_check

Here is the list of in total 8 intents of our labels:

defense claim oneself to be good or answer other people’s suspicion

attack accuse other players as being werewolf, or criticize others’ behavior as

werewolf-like, suspect others of having a bad identity

protect claim others to be good, recognize others’ claims as divine, or explain

why others are not werewolves

self_attack suicide, abandon the defense, or recognize oneself’s mistake

to_check express desire to check some player’s identity or persuade the Seer

to check him
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hang_on not sure of someone’s identity and can’t distinguish whether he is

good or bad

ph summarize the actual situation, analyze a complicated logic or present one’s

thoughts

none say "over" or make decisions as Captain (like "right hand order"), or talk

about irrelevant things or make jokes

We annotate the sense of the sentence just by its superficial sense, without

studying the real role of the speaker, neither his relation with the player that he

mentions. For exemple, as long as the speaker recognises another as werewolf,

whether they are companies or not, he attacks the other one.

As Chinese is a language which does not have spaces between words, we used

the library jieba11 to segment the Chinese sentences.

episode timestamp player speech char. intent segmented

0 S1E601 captain_election 1号 1号预言家。 民 defense 1-号-预言家

1 S1E601 captain_election 1号 昨天晚上查杀是5号牌。 民 attack
昨天晚上-查杀-

是-5-号牌

2 S1E601 captain_election 1号

我的警徽流先验9号这

张牌，帮大家正一正场

上的风气，如果是查杀

的话就直接走掉了。

民 to_check

我-的-警徽流-

先验-9-号-这-张牌-

，-帮-大家-正一正-

场上-的-风气-，...

3 S1E601 captain_election 1号

然后再验呢，再验3号

这张牌，3号最近进步

太大了，好吧。

民 to_check

然后-再验-呢-，-

再验-3-号-这-张牌-，

-3-号-最近-进步-...

4 S1E601 captain_election 1号

我觉得你们都是一个水

平线的玩家，我先验9

再验3。

民 to_check

我-觉得-你们-都-

是-一个-水平线-

的-玩家-，-我-...

We can see that in the column "segmented" there are dashes added between

words (they are spaces in the original document, we changed them to dashes

here and cut some parts for visibility).

2.1.b Statistics

We have in total 4744 sentences split and annotated. As described in the

previous part, we have 9 original files, each file records an episode of game in
11https://github.com/fxsjy/jieba, version number: 0.39
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the TV show. Here we can see that among the 9 episodes, the longest has 860

sentences. The day1_speech is the turn with most statements.

episode timestamp player speech char. intent segmented

count 4744 4744 4744 4744 4744 4744 4744

unique 9 13 12 4659 10 8 4659

top S3E202 day1_speech 5号 过 民 attack 过

freq 860 1402 520 35 1639 1604 35

The distribution of each intent label is shown in figure 1.

Figure 1: Distribution of the intent labels among the sentences

We can see that the most frequent label is attack and the least frequent is

self_attack.

We then count the length of the segmented sentences. The data are repre-

sented in figure 2.

We can see that the longest sentence has 101 words, and shortest just one

word. The average sentence length is 20, and 75% sentences have less or equal

to 27 words.

In the study of hotwords, we found some special terms used in the game.

We list them in the appendix B.
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count 4744
mean 20.75
std 11.16
min 1
25% 13
50% 19
75% 27
max 101

Figure 2: Distribution of the length of the sentences across the corpus

2.2 Intent classification

In this part, we set out to classify the intent of a single sentence (as defined

in section 2.1.a) using machine learning methods. We first try classical machine

learning algorithms using the Tf-idf representation of Bag-of-Words concept.

Then, we will implement a recurrent neural network by representing the text

with word embedding in order to take the context into consideration.

We will use only two columns of the annotated corpus: the column "seg-

mented" as texts and the column "intent" as classes. The train and test sets

are in proportion 9:1.

2.2.a Without contextual features

In this part, we will introduce the work of classification by some classical

machine learning methods. We represent the text by Tf-idf features according

to the theory of Bag-of-Words (BOW).

We will mainly use the library Scikit-Learn12 to do this task, since it has some

useful text processing functions like CountVectorizer and TfidfVectorizer.

It also has a complete set of machine learning algorithms among which we will
12scikit-learn.org, version number: 0.19.1
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use naive Bayes, logistic regression and support vector machine (SVM).

2.2.a.i Tf-idf The BOW [McTear et al., 2016] considers a sentence as a bag

of words, which means that the order of the words is not taken into account.

Hence this thinking simplifies drastically a sentence by removing its contextual

and syntaxical features. This makes the text classification tasks using BOW

very fast, while it has still been proven to be very useful.

Let’s review quickly how a sentence can be represented as a BOW and how

can we use it in our classification task.

Suppose that we have a corpus with four sentences: "I love cats", "Cats love

fish", "I love cats, cats love fish", "I will eat fish".

We then have a vocabulary of 6 words. We can order these 6 words in a dictio-

nary: {‘1’: ‘I’, ‘2’: ‘love’, ‘3’: ‘cats’, ‘4’: ‘will’, ‘5’:

‘eat’, ‘6’: ‘fish’}.

Then we could translate the four sentences to vectors of dimension 6, each

coordinate counting the occurences of the corresponding word in the sentence:

"I love cats" [1,1,1,0,0,0]

"Cats love fish" [0,1,1,0,0,1]

"I love cats, cats love fish" [1,2,2,0,0,1]

"I will eat fish" [1,0,0,1,1,1]

This can be done using CountVectorizer in Scikit-Learn.

Actually, we can normalize the vectors by dividing the coordinates by the

length of the sentence: thus we have replaced the occurrences by the term

frequency:

TF(word, sentence) =
n(word in sentence)

n(all words in sentence)

Further, we want to reduce the importance of words that are too common,

like "the" or "and", that would give too large components in the vectors. Either

we define a stop words list to delete all the common words in the sentences that

we don’t want to calculate, or we use the Inverse Document Frequency (IDF),

which is a function of the number of sentences of the corpus that contain the
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word:

IDF(word) = log
n(all sentences)

n(sentences having this word)

Or we can use both of them.

The sentences are then represented by vectors where the coordinate corre-

sponding to a word is TF(word, sentence) · IDF(word)[Manning et al., 2008].

The computation of the Tf-idf representations can be done in Scikit-Learn

with TfidfVectorizer. In fact, this functions allows for tuning of many hyper-

parameters, which all give a variant of the Tf-idf representation as explained

above. The hyper-parameters are the following:

min_df the words which have frequency lower than the min_df threshold will

be ignored when building the vocabulary

max_df the words which have frequency higher than the max_df threshold

will be ignored when building the vocabulary

stop_words the words in the stop_words list will be ignored when building

the vocabulary

max_features the maximum number of words of the built vocabulary; are

kept only the max_features words that occur the most frequently across

the corpus

ngram_range the range of ngram characters/words when building the vocab-

ulary; for example, if the vaue is (1,2), then only unigrams and bigrams

will be considered

norm the method used for normalizing the term frequency

Getting these hyper-parameters right is important for a good Tf-idf vector

representation, so that we avoid having too many features or too few features,

and that we have the most important features.

We fine-tuned those features with GridSearchCV, which was fed the follow-

ing dictionary, according to their performance on the naive Bayes classification

presented in section 2.2.a.ii:
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{

max_df : (0.1, 0.25, 0.5, 0.75),

min_df : (0.001, 0.0025, 0.005, 0.025),

max_features : (None, 5000, 10000, 50000, 100000),

norm : (’l1’,’l2’,),

stop_words : (stop_ch1,stop_ch2),

ngram_range : ((1, 1), (1, 2), (1,3))

}

Since the number of combinations of these parameters is too large, we won’t

present the results associated with all of them. Here we only give the optimal

parameters for the TfidfVectorizer: those are max_df=0.75, min_df=0.005,

max_features=None, ngram_range=(1, 3), norm=’l2’ and stop_words

containing also Chinese and Arabic numbers.

Hereafter, we will always use this vectorizer.

2.2.a.ii Naive Bayes naive Bayes is a family of probabilistic algorithms

that is widely used in text classification tasks [Schneider, 2005]. They take

advantage of Bayes’ Theorem in probability theory to predict the class of a

text. More precisely, they estimate the probability of each class for a given

text, and then output the class with the highest one. The estimation of the

probabilities uses Bayes’ Theorem, which describes the probability of a feature

based on prior knowledge of conditions that might be related to that feature;

hence the name of the method.

We will use the multinomial naive Bayes algorithm because we have 8 intents

to classify. To better explain what we did and why we chose multinomial naive

Bayes to begin, we will briefly review the concept of naive Bayes algorithm along

with our data example, for more details, see [McCallum et al., 1998].

We give an example of 4 sentences as below.
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segmented intent

1 I, P1, the Seer. defense

2 I checked P5 last night and he is a villain. attack

3
My order of succession as Captain is first this P9,

if he is a villain, I then call for his execution.
to_check

4
Then I want to check P3 because he has progressed

a lot these days.
to_check

For the sentence i, the Bayes classifier will assign the intent c(i) ∈ C (where

C is the set of all intents) with maximal conditional probability:

c(i) = argmaxc∈C P(c | i)

Bayes’ theorem gives

P(c | i) = P(i | c)P(c)/P(i) (1)

The factor P(i) does not have a real interpretation, but it does not matter

since it appears in all the probabilities we want to compare so we can simply

ignore it. The factor P(c) is computed as the frequency of the intent c among

the annotated sentences of the training set.

The last factor P(i | c) is trickier. To compute it, we make the naive as-

sumption that the words in the sentence are mutually independent, so that we

can write (here for the first sentence of our example)

P(i = 1 | c) = P("I" | c)P("P1" | c)P("the" | c)P("Seer" | c)

We then estimate P(word | c) as the number of training sentences classified

as c where the word occurs, divided by the total number of training sentences

classified as c. To avoid having the whole probability driven down to 0 by a

single word occurring nowhere in the training sentences labeled c, we apply

to every word a Laplace smoothing adding 1 to the occurrences, so that these

non-occurring words have a very low non-zero probability.
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Thus we can compute, for each sentence i, the P(c | i) for all the classes c

using equation 1 and return the class giving the greatest probability.

In fact, many things that can be done to improve this basic model. For

example, we can replace the occurrence of words by their Tf-idf features as

we introduced before. We can also lemmatize the words to group their different

inflection or remove stop words to make the sense more concise. For the Chinese

language, the lemmatization might not be so essential as for other languages,

because this language doesn’t have inflections and the combinations of Chinese

characters can produce new meanings while each character individually has its

own meaning.

Our implementation of this algorithm uses the module MultinomialNB from

Scikit-Learn, with the optimal Tf-idf vectorizer found in section 2.2.a.i. There

is one hyperparameter to tune, alpha, which represents the Laplace smoothing

parameter.

When alpha=0.01, a best score on the test set is 0.530526315789. In

comparison with the non tuned model, the score is significantly improved. We

display here some wrong labels:

index speech intent
Bayes

prediction

2442 就是我是抿了一下卦象，我是毒了这张10 号牌。 ph attack

2365 为什么呢，因为你们12 和2 的发言都很怪。 attack ph

1082 我是一个女巫，昨天晚上狼人砍的是3 号，我把3 号捞起来了。 protect attack

Translated to English, this is:

index speech intent
Bayes

prediction

2442 So I made a guess by Pa Kua, I poisoned P10. ph attack

2365
Why? Because you P12 and P2 both have made a strange

speech.
attack ph

1082
I am a Witch, last knight the werewolves killed P3, I used

my power to protect him.
protect attack

The sentence 2442 was annotated as ph because the speaker expressed was

what he thinking about. However the label attack given by the classifier would

also be acceptable.
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The sentence 2365 is certainly an attack on P12 and P2 but is labeled as ph.

Maybe there is no important keyword to be classified by attack and normally

ph sentences have longer length.

The sentence 1082 has "Witch", "werewolves", "killed", "protect" keywords

where "Witch" and "protect" have meaning of protect, but "werewolves" and

"killed" seem to be more common in attack. Perhaps the bayesian probabil-

ities of "werewolves" and "killed" in attack is much higher. In addition, the

probability of class attack is the highest (about 1
3 across the corpus). We think

this is probably the reason for this incorrect label.

So we would like to find something else than statistical probability or the

so-called "generative classifiers" like naive Bayes algorithm, we then move to

"discriminative classifiers" such as logistic regression to look for new possibilities

[Ng and Jordan, 2002].

2.2.a.iii Logistic regression Logistic Regression is a very classical algo-

rithm for classification tasks. We will first briefly explain the principle of logis-

tic regression [Fan et al., 2008], then we will use Tf-idf representation to classify

the text intent by logistic regression classifier in Scikit-Learn.

As in any regression problem, the goal of logistic regression is to fit labeled

data (xi, yi) with a function y = f(x), by choosing the f from a predefined class

of functions {fw}. For example, linear regression will fit vectorial data with a

linear function. Here, we have a classification problem, so the xi are vectors in

a space Rd but yi are in the discrete set {0, 1}, and the model function f gives

to the vector x the label closest to f(x). Given this, linear functions would not

give a good fit. Instead, we want functions that are close to 0 in a half-space

and close to 1 in the other half-space, as in figure 3.

This can be achieved using the sigmoid function S(t) = 1
1+e−t . The class of

functions we consider is then

fw,b(x) = S(w · x+ b) =
1

1 + e−w·x−b

26



f

Figure 3: The sigmoid function is suited for binary classification. Created with
GeoGebra 6.

where w is a vector of the same dimension as x and b is a scalar. Note that this

is classification by hyperplane: the parameters of the model to compute decide

the position of the separating hyperplane.

Since the sigmoid function outputs a value in the interval [0, 1], we can inter-

pret it as a probability: we will say that the model of parameters (w, b) assigns to

the input x the label 1 with probability fw,b(x) and 0 with probability 1−fw,b(x).

Then given an observed data (x, y) (with y ∈ {0, 1}), the data corresponds to

the model prediction with probability P(y | x,w, b) = fw,b(x)
y(1− fw,b(x))

1−y.

Assuming independence between observation, the likelihood that the model will

output all of our data (xi, yi) becomes

L(w, b) =
∏
i

P(yi | xi, w, b) =
∏

fw,b(xi)
yi(1− fw,b(xi))

1−yi

=
∏
i

(
1

1 + e−w·xi−b

)yi
(

1

1 + ew·xi+b

)1−yi

and our objective is to find the parameters (w, b) that maximize this likelihood,

or equivalently that minimize the inverse loglikelihood

− log(L(w, b)) =
∑
i

yi log(1 + e−w·xi−b) + (1− yi) log(1 + ew·xi+b)

. This is also called the cross entropy error. Generally, people also add to this er-

ror a regularization term in 1
2C (‖w‖2+b2) where C is a scalar hyperparameter[Ng and Jordan, 2002],

aimed at preventing the parameters (w, b) from becoming too wild (to prevent

overfitting). The more C grows, the less this has an influence on the result.
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The minimization problem is typically addressed by a gradient descent tech-

nique: starting from a point (w, b) in the parameter space, the gradient of the

cross entropy error in this point is computed, then the point is updated by a

small increment in the direction opposite to the gradient. After enough itera-

tions, a local minimum should be reached.

In our example, we have 8 intents to classify, so it is a multiclass classification

task and not a binary one. There are several approaches to this problem. One

is to pick out a class k and produce a binary logistic regression model fwk,bk

that should output 1 for data of class k and 0 for data of class different than

k. This can be done for each class, so that we get one model fwk,bk per class

k. To merge them together, we simply decide that an input vector is mapped

to the class of highest probability, that is to k such that fwk,bk(x) is maximal.

This method is called one-vs-rest logistic regression (OVR), and is naturally

best suited for problems where each classification problem is independent.

Another common approach is called multinomial logistic regression. Its idea

is to model the probabilities of each class k (taken from a set {1, . . . ,K} as

proportional to ewk·x+bk , where the wk and bk are the parameters of the model.

Therefore, according to the model, the probability that the class of x is j is
ewk·x+bk∑K
l=1 ewl·x+bl

, so the likelihood to maximize is

L(w1, b1, . . . , wK , bK) =
∏
i

∑K
k=1 δ(yi = k)ewk·x+bk∑K

l=1 e
wl·x+bl

with also possibly a regularization term 1
2C (
∑

j‖wj‖2 + b2j ).

For our work, we use the function LogisticRegression from Scikit-learn,

and we tune the following parameters using GridSearchCV :

multi_class the approach to multi-class logistic regression, that is ’ovr’ or

’multinomial’

solver the algorithm to use in the optimization problem when training the

parameters. Note that only ’newton-cg’, ’sag’, ’saga’ and ’lbfgs’

can be chosen for multinomial loss, and ’liblinear’ is for OVR
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C inverse of regularization strength, this is the scalar that appears in the reg-

ularization term.

According to the Grid Search result, the optimal hyper-parameters are:

multi_class=’ovr’, solver=’liblinear’, C=10. It gives a best score on

test set of 0.532631578947.

There is also an interesting phenomene here: the three sentences that we

analyzed as examples of misclassification by the naive Bayesian algorithm are

again incorrectly labeled.

index speech intent
LR

prediction

2442 So I made a guess by Pa Kua, I poisoned P10. ph defense

2365
Why? Because you P12 and P2 both have made a strange

speech.
attack ph

1082
I am a Witch, last knight the werewolves killed P3, I used

my power to protect him.
protect attack

However this time sentence 2442 is classified as defense. It might be ac-

ceptable because "I poisoned P10" could be seen as equivalent to a personal

statement of "I am a Witch" since only the Witch has poison, and the dec-

laration of one’s own good identity could be labeled as defense. Maybe this

sentence is itself too ambiguous.

According to Scikit-Learn’s official documentation13, the support vector ma-

chine algorithms are supposed to have good performance in text classification

tasks. Since the results of naive Bayes and logistic regression are very close, we

will try SVM algorithm in the next part.

2.2.a.iv Support vector machine Another variant of classification by hy-

perplane is the support vector machine (SVM)[Ng, 2018]. Like logistic regres-

sion, an SVM will solve a binary classification problem by drawing a hyperplane

that best separates the two classes. The major difference is that the SVM draws

the hyperplane so that it is the farthest possible from any data point, ie there is
13http://scikit-learn.org/stable/modules/svm.html
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a widest possible "no man’s land" along the hyperplane and without any data

point inside, as in figure 4.

Figure 4: The SVM tries to separate the to classes with a largest possible strip.
Source: https://commons.wikimedia.org/w/index.php?curid=3566688

The result is that only the data points close to the hyperplane (i.e. at the

"boundary" of their class) are taken into account; those data points are the

so-called support vectors. Hence the points far from the "boundary" (i.e. well

"inside" their class) do not influence the choice of the hyperplane, while in a

logistic regression all the data points would have some influence.

More precisely, given data points xi ∈ Rd with labels yi ∈ {−1; 1}, we want

to find an hyperplane w · x + b (with normal vector w) such that all the data

points are correctly classified, i.e. sign(w · xi + b) = yi, and where the minimal

distance 1
‖w‖yi(w · xi + b) of a data point to the hyperplane is maximized. We

can rescale w and b such that the minimum of the yi(w · xi + b) is 1, then

the distance to maximize is 1
‖w‖ . This corresponds then to the minimization
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problem
minimize 1

2 ‖w‖
2

subject to yi(w · xi + b) ≥ 1

However, the problem is not always solvable : if the two classes are somewhat

mixed together, there may not exist a hyperplane that separates them perfectly.

Therefore we have to allow for some error (data points xi wandering at some

distance − 1
‖w‖yi(w · xi + b) at the wrong side of the hyperplane), and penalize

them using a squared hinge function

sqhinge(ξ) =

0 if ξ > 0

ξ2 if ξ ≤ 0

Our problem becomes

minimize 1
2 ‖w‖

2
+ C

∑
i ξ

2
i

subject to yi(w · xi + b) ≥ 1− ξi and ξi ≥ 0

where C > 0 is a regularizing parameter. This formulation allows the problem

to be solved with Lagrange duality.

The choice of C is essential as we can see in the figure 5.

Figure 5: Influence of the regularization parameter C.
Source: https://stats.stackexchange.com/questions/31066/
what-is-the-influence-of-c-in-svms-with-linear-kernel/159051
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When C is high, it becomes very important to classify as many data points

correctly as possible, at the cost of a small distance between points and the

hyperplane. Conversely when C is low, classification errors do not matter much

if it can allow for a wider gap along the hyperplane (the error stemming from

a few points in the gap is driven very low by C). To summarize heuristically,

setting a lower C avoids overfitting at the cost of fidelity to the data points.

In our work, the SVM is implemented with LinearSVC from sklearn (hence

the default squared hinge error instead of the more common hinge), with the

default one-vs-rest strategy for multiclass classification. The hyper-parameter

C is tuned with GridSearchCV.

We found that C=0.3 gives a best score on test set of 0.547368421053. This

is the highest accuracy compared to naive Bayes and logistic regression, but

even then we found the three example sentences to be still incorrectly labeled:

index speech intent
SVM

prediction

2442 So I made a guess by Pa Kua, I poisoned P10. ph defense

2365
Why? Because you P12 and P2 both have made a strange

speech.
attack ph

1082
I am a Witch, last knight the werewolves killed P3, I used

my power to protect him.
protect attack

The misclassifications here are identical to those of logistic regression (in

particular for sentence 2442)

Here are some sentences that are incorrectly classified by logistic regression,

but are correctly labeled by SVM:

index speech
intent /

SVM pred.

LR

prediction

2639 他的视角，还有他的心态，一定是一张预言家牌。 protect attack

3670
不要说什么通过12 号的发言，5 号的发言来判断

我的身份。
defense attack

2218 你验他的理由太牵强了，他验我，我能接受。 attack ph

In English:
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index speech
intent /

SVM pred.

LR

prediction

2639
His perspective of view, plus his attitude,

he must be a Seer
protect attack

3670
Don’t say that you judge my identity according to

the speech of P12 or the one of P5
defense attack

2218
The reason that you verified him is completely out

of the point, I can accept that he verifies me though
attack ph

The SVM seems to perform better than logistic regression on the unequivocal

sentences like 2639, though not specifically better on the ambiguous one.

2.2.b With contextual features

The best results of the above algorithms are around 53%, while normally

they would do a good job in text classification tasks. We suppose that it is due

to the lack of consideration of context features.

Many text classification tasks aim to classify the topic of the text or the

sentiment of a review. In this case, using word Tf-idf features may represent

the sentence appropriately enough because the topic or the sentiment is highly

related to the words that we use in the sentence. The order of the word or the

so called context features, might not be so determinative to the task.

However in our case, when we sorted the most correlated words for each

intent, we found that many words overlap across intents. Therefore it might be

a good idea to take context features to consideration.

To this end, we can try to consider a sentence as a sequence of words instead

of a bag of words. This representation is especially suited to a recurrent neural

network, as it processes the input sentence word by word and reuses former

information recursively during the propagation, thus keeping some measure of

the contextual information.

The words of the sentences, as parts of the input in the neural network, need

to be represented as vectors. We could simply take the dimension to be the size

of the vocabulary and have a word be a vector of zeros and a one, however this

makes the dimension unnecessarily big. Instead, we can use a word embedding,
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that is a way to represent words as vectors in a low-dimensional space while still

retaining the semantic relationships between them through the geometry of the

space.

2.2.b.i word embedding To talk about word embedding, we would first

like to begin with the concept of a simple Neural Network [Hansen and Salamon, 1990].

A neural network is made of neurons which are connected through computations

where informations flows (weights for out computational model), and when we

train a neural network we want the neurons to fire whenever they learn specific

patterns from the data. The fire rate is modeled using an activation function.

Neurons in the networks are arranged in layers. It will have an input layer

h0 which just represents the input information as a vector x and passes it to

the next hidden layer h1 "almost" linearly: the layer h1 gets the result of the

product W1h0 where W1 is a matrix. An activation function g1 is then used

on this result, so that ultimately the information got by h1 is non linear in the

input. This is to prevent the whole network from being linear as composition of

linear steps (the hidden layers would then be pointless). The activation function

could be the sigmoid we introduced before, it could also be other functions. The

information of h1 is then passed to the layer h2 in a similar fashion and so on. At

the end of the hidden layers we have the output layer. In this layer, an activation

function like ‘softmax’ (similar to sigmoid) is used to get the probability of each

class and then chose the one which has highest probability.

As an example, consider the following word prediction problem in [Bengio et al., 2003].

Suppose we have a text corpus with a vocabulary of size V . Our task is to pre-

dict a word wt in a sentence given the previous and following words wt−1, wt−2,

wt+1, wt+2, etc. This is a classification task: wt is the class that we would like

to classify the given words into.

We will achieve this task by training our data through an one-layer neural

network, represented in figure 6. First, we input the context words using a one-

hot encoding. We then set the hidden layer to be a matrix of dimension n×m,

where the horizontal length is an integerm and the vertical length is the number
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Figure 1: Neural architecture: f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1)) where g is the
neural network andC(i) is the i-th word feature vector.

parameters of the mapping C are simply the feature vectors themselves, represented by a |V |⇥m
matrixC whose row i is the feature vectorC(i) for word i. The function g may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters ω. The
overall parameter set is θ= (C,ω).

Training is achieved by looking for θ that maximizes the training corpus penalized log-likelihood:

L=
1
T ∑t

log f (wt ,wt�1, · · · ,wt�n+1;θ)+R(θ),

where R(θ) is a regularization term. For example, in our experiments, R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parameters only scales linearly with V , the number of
words in the vocabulary. It also only scales linearly with the order n : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layer C, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with a softmax output layer, which guarantees
positive probabilities summing to 1:

P̂(wt |wt�1, · · ·wt�n+1) =
eywt
∑i eyi

.

3. The biases are the additive parameters of the neural network, such as b and d in equation 1 below.

1142

Figure 6: Prediction of a word based on the context. For our explanation we
can ignore the second layer with tanh. Source: [Bengio et al., 2003]
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n of input context words. It is computed from the input layer using a matrix C

of dimension m × V : the i-th lign of the hidden layer will be is C(wi) = Cxi

where xi is the i-th input one-hot vector (corresponding to wi). Note that for

this first layer we do not use an activation function, this part is linear. From

this we compute the output layer (y1, ..., yV ) of size V , and we apply a softmax

function to assign to the j-th word in our vocabulary the probability eyi∑V
j=1 eyj

that this word is the word wt to predict.

After this neural network is trained, we get in particular the matrix C, of

dimension m×V of trained weights for the first layer. This gives an embedding

of our vocabulary into the vector space Rm. Such embeddings can retain many

interesting semantic properties, as explained in the introduction section 1.2.

Nowadays, people publish many works of pre-trained word embeddings for

many languages based on different corpora, or with different models and vector

dimension. We chose the Chinese word embedding 14 based on Chinese Quora

with the state-of-the-art model word2vec. Compared to other corpus, we think

that this corpus is a good compromise, having not too many oral characters nor

being too serious like People’s Daily.

2.2.b.ii Recurrent neural networks In the previous part, we introduced

a simple neural network architecture. In fact, the neural network family is huge,

with feedforward neural networks like perceptrons, back propagation networks

and convolutional neural networks, as well as feedback neural networks like

recurrent neural networks (RNN).

The RNN are proved to have better performance in NLP sequential tasks

thanks to their recurrent property [LeCun et al., 2015]. The basic concept of

RNN uses the time component, and is shown in figure 7.

The basic graph of the network is represented by the one on the left, and its

unfolding in time is the one on the right: it is comprised of one hidden layer s

which is recursively updated (so it is in fact multiple hidden layers s0, s1, etc).

The network is fed the input x by successive bits xt, and the layer s is computed
14https://github.com/Embedding/Chinese-Word-Vectors
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that each contribute plausibility to a conclusion84,85. 
Instead of translating the meaning of a French sentence into an 

English sentence, one can learn to ‘translate’ the meaning of an image 
into an English sentence (Fig. 3). The encoder here is a deep Con-
vNet that converts the pixels into an activity vector in its last hidden 
layer. The decoder is an RNN similar to the ones used for machine 
translation and neural language modelling. There has been a surge of 
interest in such systems recently (see examples mentioned in ref. 86). 

RNNs, once unfolded in time (Fig. 5), can be seen as very deep 
feedforward networks in which all the layers share the same weights. 
Although their main purpose is to learn long-term dependencies, 
theoretical and empirical evidence shows that it is difficult to learn 
to store information for very long78.  

To correct for that, one idea is to augment the network with an 
explicit memory. The first proposal of this kind is the long short-term 
memory (LSTM) networks that use special hidden units, the natural 
behaviour of which is to remember inputs for a long time79. A special 
unit called the memory cell acts like an accumulator or a gated leaky 
neuron: it has a connection to itself at the next time step that has a 
weight of one, so it copies its own real-valued state and accumulates 
the external signal, but this self-connection is multiplicatively gated 
by another unit that learns to decide when to clear the content of the 
memory. 

LSTM networks have subsequently proved to be more effective 
than conventional RNNs, especially when they have several layers for 
each time step87, enabling an entire speech recognition system that 
goes all the way from acoustics to the sequence of characters in the 
transcription. LSTM networks or related forms of gated units are also 
currently used for the encoder and decoder networks that perform 
so well at machine translation17,72,76. 

Over the past year, several authors have made different proposals to 
augment RNNs with a memory module. Proposals include the Neural 
Turing Machine in which the network is augmented by a ‘tape-like’ 
memory that the RNN can choose to read from or write to88, and 
memory networks, in which a regular network is augmented by a 
kind of associative memory89. Memory networks have yielded excel-
lent performance on standard question-answering benchmarks. The 
memory is used to remember the story about which the network is 
later asked to answer questions. 

Beyond simple memorization, neural Turing machines and mem-
ory networks are being used for tasks that would normally require 
reasoning and symbol manipulation. Neural Turing machines can 
be taught ‘algorithms’. Among other things, they can learn to output 

a sorted list of symbols when their input consists of an unsorted 
sequence in which each symbol is accompanied by a real value that 
indicates its priority in the list88. Memory networks can be trained 
to keep track of the state of the world in a setting similar to a text 
adventure game and after reading a story, they can answer questions 
that require complex inference90. In one test example, the network is 
shown a 15-sentence version of the The Lord of the Rings and correctly 
answers questions such as “where is Frodo now?”89.  

The future of deep learning 
Unsupervised learning91–98 had a catalytic effect in reviving interest in 
deep learning, but has since been overshadowed by the successes of 
purely supervised learning. Although we have not focused on it in this 
Review, we expect unsupervised learning to become far more important 
in the longer term. Human and animal learning is largely unsupervised: 
we discover the structure of the world by observing it, not by being told 
the name of every object. 

Human vision is an active process that sequentially samples the optic 
array in an intelligent, task-specific way using a small, high-resolution 
fovea with a large, low-resolution surround. We expect much of the 
future progress in vision to come from systems that are trained end-to-
end and combine ConvNets with RNNs that use reinforcement learning 
to decide where to look. Systems combining deep learning and rein-
forcement learning are in their infancy, but they already outperform 
passive vision systems99 at classification tasks and produce impressive 
results in learning to play many different video games100. 

Natural language understanding is another area in which deep learn-
ing is poised to make a large impact over the next few years. We expect 
systems that use RNNs to understand sentences or whole documents 
will become much better when they learn strategies for selectively 
attending to one part at a time76,86. 

Ultimately, major progress in artificial intelligence will come about 
through systems that combine representation learning with complex 
reasoning. Although deep learning and simple reasoning have been 
used for speech and handwriting recognition for a long time, new 
paradigms are needed to replace rule-based manipulation of symbolic 
expressions by operations on large vectors101. ■
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Figure 5 | A recurrent neural network and the unfolding in time of the 
computation involved in its forward computation. The artificial neurons 
(for example, hidden units grouped under node s with values st at time t) get 
inputs from other neurons at previous time steps (this is represented with the 
black square, representing a delay of one time step, on the left). In this way, a 
recurrent neural network can map an input sequence with elements xt into an 
output sequence with elements ot, with each ot depending on all the previous 
xtʹ (for tʹ ≤ t). The same parameters (matrices U,V,W ) are used at each time 
step. Many other architectures are possible, including a variant in which the 
network can generate a sequence of outputs (for example, words), each of 
which is used as inputs for the next time step. The backpropagation algorithm 
(Fig. 1) can be directly applied to the computational graph of the unfolded 
network on the right, to compute the derivative of a total error (for example, 
the log-probability of generating the right sequence of outputs) with respect to 
all the states st and all the parameters.
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Figure 7: An RNN is represented by the graph on the left; unfolding along the
time component gives the graph on the right. Source: [LeCun et al., 2015]

from the last input xt using weights U and from the previous iteration st−1 of

itself using weights W , with an activation function that could be softmax, tanh

or rectified linear unit (ReLU). At each iteration, an output ot can be produced

using weights V . Since the matrices U , V andW are the same at each iteration,

we can say that the network keeps previous information, as if having memory.

For general NLP applications, we can see x as a sentence, and xt is the

embedding of the t-th word in x. In this setting, the property of retaining

memory can be translated by saying that the contextual features are taken into

consideration.

In the real-life implementation, people often use two variants of RNN: LSTM

(Long Short TermMemory) and GRU (Gated Recurrent Unit) [Chung et al., 2014].

We will use the LSTM variant, that we first briefly explain.

The invention of LSTM addresses the problem of vanishing and exploding

gradient [Bengio et al., 1993]. Basically, this problem arises in the original RNN

models, where an earlier input will have less influence compared to a closer input.

So the output is often taking more information from new input, that’s to say

the RNN cannot have a long term memory.

LSTM then introduces a concept called constant error carrousel (CEC), this

is to make the ideal activation function a linear function. So letting W be

the identity and the activation be f(x) = x will keep the error constant. We

then have st = st−1 + Uxt. But then there will be the problem of updating
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the U and V confliction. To solve this problem, people artificially create two

gates: an input gate gin and an output gate gout. Then st = st−1 + ginUxt,

and ot = goutst. Furthermore, people have recently made many improvements

[Chung et al., 2014] like adding a forget gate to memorize and forget the CEC

in self-connection.

In this project, we used the LSTM module in Keras15. We used an LSTM

with self-trained word embedding, another with pre-trained Chinese word em-

bedding and set trainable or not. There are many hyper-parameters that should

be taken into consideration:

batch_size the number of samples in a time when training, called batching

epochs: the epochs of training

embedding_dim the dimension of embedding vector, that we set to be the

same as the pre-trained word embeddings (300)

activation the activation function at the end of the hidden layer

dropout regularization method where inputs to LSTM units are probabilisti-

cally excluded from activation and weight updates while training a network

recurrent_dropout dropout for recurrent connections

optimizer the optimization methods: could be SGD, Adagrad, etc.

lr the learning rate in optimizer, a big lr makes gradient descent go at a big

pace

Through a grid search for the hyper-parameters, we obtained that the opti-

mal parameters for the LSTM with self-trained word embedding are:

batch_size=100, epochs=20, embedding_dim=300, activation=’sigmoid’,

dropout=0.4, recurrent_dropout=0.4, optimizer=’adam’, lr=0.01.

As we introduced in the corpus statistics section 2.1.b, we find that the

average sentence length is 20, and 75% of sentences have fewer or equal to 27
15https://keras.io, version number: 2.0.6
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words. We present the test accuracy with the hyper-parameters above and with

the input sentence length padded into 15, 20, 30, 40, 50 as below.

self-trained pretrained trainable

10 0.410526316417 0.389473690798 0.412631575999

20 0.446315785772 0.471578950945 0.450526320621

30 0.461052637351 0.48421051314 0.458947369927

40 0.465263153377 0.498947369425 0.46736842237

50 0.448421040648 0.442105260335 0.433684207891

From the table we can see that, with the same hyper-parameters, the pre-

trained word embedding gives best performance to this task. Compared to other

input length, padding each sentence to 40 words generally gives the best results.

2.2.c Comparing the results

The benchmark performance of the classifiers we implemented in the previ-

ous parts is as below:

support vector machine + Tf-idf 0.547368421053

Multinomial Logistic Regression + Tf-idf 0.532631578947

naive Bayes + Tf-idf 0.530526315789

LSTM + pretrained word embedding 0.498947369425

LSTM + pretrained word embedding + continuous training 0.46736842237

LSTM + self-trained word embedding 0.465263153377

The support vector machine with Tf-idf gives the best results, with a score

of 55%. In the following parts of our project, we will then keep it as our intent

classifier.

If we use a random classifier (i.e. with output independent of the input),

the optimal way is to always predict the most frequent intent attack (which

occurs for 33.8% of the corpus sentences), and the random baseline accuracy

would be 33.8%. Thus our trained classifiers are a net improvement from the

baseline. Also, previous analysis pointed out that many misclassifications stem

from data that was annotated ambiguously (where another intent could also
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have been annotated), so our best score of 55% is in fact a lower bound of the

"real" effectiveness.

One disappointment however is the LSTM: compared to the other algo-

rithms along with Tf-idf representation, the neural network is not as good as

we expected. It seems that even with the advantage taking into consideration

the context features, the classifier does not perform well. There are still many

things to do which might bring some improvements to the RNN, such as add

more LSTM layers, collect more data or add syntactical features. In this case,

the hyper-parameters should also be re-tuned. Given more computation time,

we could follow this lead to probably get interesting results.

In the next parts, we will focus on text meaning understanding in favor of the

syntactical features retrieved by HanLP then summarize all input information

for further use.

2.3 From classification to comprehension

In the previous parts, we used several algorithms to classify the main intent

of a sentence, but we still do not know what the meaning of the sentence is. If a

sentence expresses intention of attacking someone, we would like to know which

person is the target. Besides, since the classifiers always give a score of about

50%, we will not rely only on the intents that are labeled. Instead, we will take

syntaxical considerations in order to understand the meaning of a sentence.

At first, we will introduce a Chinese language processing library HanLP 16 to

parse the sentence. In the next step, we will explain how we use the dependency

information, along with the intent label to extract the meaning of the sentence.

Notice that, from this step, the information is no longer totally independent

to each other. The sentences of a player in a speech turn will be finally summa-

rized and then based on that, the attitude of all players in a speech turn will

also be summarized.

Hence we cannot process them in disorder such as what we do in the clas-
16https://github.com/hankcs/HanLP
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sification task. We should choose a complete game to process its turns. The

S1E101 game is chosen to be the test data. By concern of not leaking the test

data in the train data, we use other episodes’ data as train set and we use only

the hyper-parameters that are fine tuned in section 2.2 to retrain a classifier of

intent, then apply on the test file. The classifier LinearSVC is chosen because

of its good and fast performance.

2.3.a Who attacks whom

In this part, we will first extract from each sentence its basic "subject verb

object" structure. We will then, secondly, use this structure, combined with the

classifier produced in the previous section, to extract some explicit information

conveyed by the sentence, such as "who attacks whom", "who protects whom",

"who defends himself against whom", etc.

There are basically two ideas to realize this second extraction: either we use

the sentence intent labeled with the classifiers in 2.b as the verb "attack" or

"protect" etc, then use the subject and object retrieved as "who" and "whom";

or we relook the verb retrieved to see whether it corresponds to the labeled

intent. Indeed in some cases, players use specific verbs (cf. glossary B) that give

an explicit indication of their intent. These indicated intents might be different

to the labeled ones. As we have said before, the accuracy of our classifiers is

always around 50%, we would better not to only rely on the classifiers to take

labeled intent as meaning verbs, so these two ideas will both be used in the

section.

In this part, we will use the library HanLP17 to parse the dependency of

a sentence. HanLP is a powerful open source tool that focuses on Chinese

processing in many basic tasks like Chinese word segmentation, POS tag, named

entity recognition, dependency parsing, etc, as well as more complicated tasks

like keyword extraction, automatic summary or text classification.

The reason that we chose HanLP is its convenience and rich abilities. We
17https://github.com/hankcs/HanLP, version number: 0.1.41
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had used jieba18 for Chinese word segmentation for its fast and satisfying per-

formance, and it allows an user defined dictionary to which we can add new

words to the segmentation model. However, jieba can not parse the syntax of a

sentence. Other classical NLP libraries like NLTK and Stanford CoreNLP get

more complicated with an user defined dictionary and do not use the results of

the jieba segmented sentences in their processing. Hence HanLP was the best

choice for us.

The result of a sentence dependency parsing, for the example *我验了5号，

他是张查杀" (in English: "I verified P5, he is a villain") is as below:

Ind Text Lemma POS POS Dependent Dependency
1 我 我 r rr 2 主谓关系

2 验 验 v v 0 核心关系

3 了 了 u ule 2 右附加关系

4 5 5 m m 5 定中关系

5 号 号 q q 2 动宾关系
6 ， ， wp w 2 标点符号

7 他 他 r r 8 主谓关系

8 是 是 v vshi 2 并列关系

9 张 张 q q 10 定中关系

10 查杀 查杀 n n 8 动宾关系

In figure 8 we translate the Chinese in literal English so that it is more clear

for the readers.

It is a ConLL format object. The first column is the index of word, the second

one the text, the third one its lemma, the fourth and fifth one its nature (POS

tag), the seventh is the index of the word from which this word depends, and the

eighth column gives their dependency relation. One can consult the complete

documentation of the labels’ meaning. Here we will focus on the dependency

relation.

According to this table, the sentence could be seen as composed of two

phrases. The head of the sentence is "verify", but since there is another verb "is"

in the second phrase, it is labeled as "coordinate" to the head verb. Respectively,

their subjects are 1 and the 7. Their objects are 5 and 10. The word "P5"
18https://github.com/fxsjy/jieba
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Figure 8: English translation of the ConLL output example by HanLP

is segmented as 2 words in Chinese, where "号" is the object and "5" is the

attribute.

For each sentence, we will construct a list keeping the most basic syntaxic

information , giving two places for verbs, two places for subjects and two places

for objects :

[’核心关系’,’核心关系’,’主谓关系’,’主谓关系’,’动宾关系’,’动宾关系’]

[’verb’,’verb’,’subject’,’subject’,’object’,’object’]

If we have a word labeled as head verb in the sentence, we then replace the

first ’verb’ in the list with the word. If we find its coordinate verb, we then

fill it to the second place for verbs. If there are still more verbs, we ignore them.

For the subjects, besides the words labeled as subject-verb dependent to

the head, we also look for the word with coordinate relation to the subject

that we have found. If there are more than 2 subjects, we ignore the latters.

The objects are treated in the same way.

In our example, we get a list like this:

[’说’,’号’,’预言家’,’主谓关系’,’警徽流’,’号’]

[’say’,’number’,’Seer’,’subject’,’jinhuiliu’,’number’]

We then store them in the dataframe as a string, under the "syntax" column,
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as shown in figure 9.

Figure 9: The basic syntactic structure extracted from the sentences.

Now, finally, we transform this "syntax" information into explicit informa-

tion such as "who attacks whom", "who protects whom", "who defends himself

against whom", etc. We proceed as follows: if we find the verbs in the depen-

dency structure to be specific terms and the labeled intent corresponds to them,

we have no doubt about the intent meaning, then we look at the object - it is

generally the player number, we then take it as the target. If we find the verbs

to be specific terms but the labeled intent does not correspond to them, we

take the specific terms meaning as the intent meaning then retrieve the player

number as the target. Else if we do not find specific verbs, we then rely on the

labeled intent and retrieve the target player number. The complete set of rules

can be found in the code on Github.

This information is encoded in a dictionary, whose keys are the actions (such

as "attack", "claim as Seer", etc.) and the values are the objects of the actions

(represented as list of player numbers). For example, for the sentence "Yesterday

I checked P12, I give him my jinshui", the information to be extracted is that

the speaker claims P12 is good (he "认好人" him), and more specifically this

claim is through jinshui (i.e. the speaker, who previously claimed to be the Seer,

says he used his special ability to find P12 is good). Therefore the dictionary

corresponding to the sentence is {’认好人：’:[’12’],’金水：’:[’12’]. In

general, all the possible keys are:

自自自认认认：：： claim oneself to be of ... identity, the value is a list which could
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have identities like "神","民","好人","预言家","女巫","禁言长老","潜

行者","猎人","守卫","白痴","狼" ("divine villager", "ordinary villager",

"good",

"Seer", "Witch", "Ancient", "Assassin", "Hunter", "Savior", "Idiot", "were-

wolf")

警警警徽徽徽流流流：：： the order of succession as Captain, the value is a list containing the

player numbers to which the speaker will give the Captain title after check-

ing

验验验：：： to check, the value is a list containing the player numbers that the speaker

wants to check or recommends the Seer to check

不不不确确确定定定：：： not sure, the value is a list containing the player numbers that the

speaker suspects but not for sure

认认认好好好人人人：：： recognize his good identity, the value is a list containing the player

numbers that the speaker trusts to be good

认认认坏坏坏人人人：：： sure of his bad identity, the value is a list containing the player num-

bers that the speaker thinks for sure to be bad

不不不对对对付付付：：： not go well with. . . , the value is a list containing the player numbers

that are in opposition with the speaker and so that the speaker has to

defend himself against those players

金金金水水水：：： sure of his good identity proved by Seer (this identity is called jinshui,

the Golden Water), the value is a list containing the player numbers that

the speaker thinks for sure to be good identity because the player trusts

the Seer too

预预预言言言家家家：：： recognize his Seer identity, the value is a list of the player numbers

that the Speaker trusts or trusted as Seer

女女女巫巫巫：：： recognize her Witch identity

潜潜潜行行行者者者：：： recognize his Assassin identity
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禁禁禁言言言长长长老老老：：： recognize his Ancient identity

猎猎猎人人人：：： recognize his Hunter identity

白白白痴痴痴：：： recognize his Idiot identity

守守守卫卫卫：：： recognize his Savior identity

Notice that, the dictionary is for one single sentence, we will then combine

them latter.

Here we just give a screenshot of the speech, syntax, label and attitude

dictionary of one sentence:

We apply this function to every sentence, as shown below:

In the following part, we summarize the attitude dictionaries (here the "ab-

stract" column) to have a bigger view of the game situation.

2.3.b Speech turn summary

In this part we will summarize the speech of each player for each turn. As

we have introduced in section 2.1.a, the csv file is ordered by speech turn in the

column "timestamp", then by player number in the column "player". Hence we

define a function to aggregate several attitude dictionaries from single sentences

in the column "abstract" to one for each player and store it into column "0".

For the reading convenience, we display here only the columns "timestamp",

"player" and "0", as in the figure 10.
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Figure 10: Attitude dictionaries are put together in column 0.

We found that in index 10, player 5 does not have summarized dictionary,

that is because he is forbidden from speaking in this turn. This information is

stored apart in the behavior record about which we will explain more details in

part 3.

The format of dictionary is still too noisy for the analysis. Besides, there

is a lot of information redundancy. That is because during a speech turn, one

may keep attacking a player with several sentences.

We then come up with the design of a "personal perspective pattern", that is

to say, we will make a list of 13 items, for which the original value is "unknown".

The list represents the identities of all the 12 players in the game, in the point

of view of a player. The identities are the key in the summarized attitude

dictionary. In Python code, the index of a list begins from zero; for us the

second item, whose index is 1, will represent P1; the third item, whose index is

2, will represent P2, etc.

For example, if the personal perspective pattern of player 2 is

["UNK", "UNK", "预言家", "UNK", "UNK", "验", "UNK", "验",

"UNK", "UNK", "UNK", "UNK", "金水"]

["UNK", "UNK", "Seer", "UNK", "UNK", "Check", "UNK", "Check",

"UNK", "UNK", "UNK", "UNK", "jinshui"]

this means that P2 sees himself as the Seer, wants to check P5 and P7, and

recognized P12 as jinshui.
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We should pay attention that the keys of the attitude dictionary are not

always at same level. For example, one may recognize another as "good" but

also more specifically as "jinshui" (the Golden Water, the one who is checked

by the Seer and verified as good). Here "jinshui" is more precise than "good",

hence we will take "jinshui" as useful information instead of "good".

Another point to pay attention is that, a player may recognize another one

as "good" then change his mind to think of the player as "bad" (i.e. wolf) or

conversely. But since we summarize his speech in dictionary format, we do not

have the information of which identity is his final decision. Fortunately we have

the list of "good" and "bad", and in each list, a player may occur several times

because the speaker will talk about this player several times. We then count

the occurence of the player for "good" and "bad" respectively, then choose the

most frequent one as his identification. It is not a completely correct solution

but it is acceptable.

The final information retrieved is like below:

In the next part, we will try to guess which one is most likely to be the

werewolf, with help of the behavior information.
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3 Behavior processing

What is behavior in the game ? As we explained in the game rules section

1.3, in Day 1 there is at first a captain election, the elected captain will have a

1.5 weight in the subsequent votes for execution. After the captain election, the

Moderator will announce the death information in Night 1. Then the Captain

will choose a player to start the speech tour. After everyone has spoken, all

the players will vote for someone’s execution. All these information, including

election results, votes, captain’s decision, along with the werewolf’s suicides (if

any), are considered as behavior.

Novice players often have nothing to talk about, while in this professional-

grade game, players often have too much to say. In fact, when we study the

content and meaning of the speech, we found these professional players tend to

analyze the possible character of one player by three aspects: his statement, his

behavior and his general attitude. For the statement, besides the meaning of

the sentence, the expression that he uses and even the emotion that he shows

also count as very important. As for the behavior, let’s provide an example.

Suppose in the captain election, a werewolf A pretends to be the Seer and he

declares having identified werewolf B as bad, and there are two other candidates

including a villager and the real Seer who declares that A is a werewolf. If the

werewolf B votes for the villager to be Captain, this behavior makes B to expose

himself, for the reason that a villager will certainly vote for the Seer who declares

bad the Seer who declares him bad. This shows how the behavior is sometimes

revealing. The general attitude that the player exudes is the last thing that we

are interested in, it is useful only when the game is face to face or the players

know each other. We often talk about the normal performance of someone and

the abnormal aspects that he has in a particular game.

3.1 Behavior record

Here we give the list of behavior features that might be taken for consider-

ations in the future prediction of player’s character, ordered by the turn. We
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take the game S1E101 as example.

Initial parameters:

• number_of_players: 12

• part-to-kill: True

• character_pattern: {’n_villager’: 4, ’n_god’: 4,

’ordinary_werewolf’: 4, ’white_wolf’: 0, ’seer’: 1,

’witch’: 1, ’hunter’: 0, ’idiot’: 0, ’ancient’: 1,

’assassin’: 1, ’savior’: 0}

• witch_can_save_herself: True

• character_distribution: [’UNK’, ’UNK’, ’UNK’, ’UNK’, ’UNK’,

’UNK’, ’UNK’, ’UNK’, ’UNK’, ’UNK’, ’UNK’, ’UNK’, ’UNK’]

• player_alive: [‘alive’, ‘alive’, ‘alive’, ‘alive’, ‘alive’,

‘alive’, ‘alive’, ‘alive’, ‘alive’, ‘alive’, ‘alive’,

‘alive’, ‘alive’]

The character_pattern is the game pattern. It is represented by a dic-

tionary where the key is a character (or role) and the value is the number of

players having that role.

The character_distribution is a list which contains 13 items. The item

represents the known characters, where the index of an item is the number the

corresponding player player. We don’t have a "player 0" so the first item of the

list, which has index 0, is just unknown and serves no purpose.

Notice here that, the character_distribution list is different from the

personal_perspective_pattern from the previous part. The character_

distribution represents the reality, it can only note the certainly known play-

ers’ character such as a suicided werewolf, a Hunter who fires or an idiot who is

executed but can stay in the game.

The player_alive also has 13 items. It represents the life status of each

player. In the initial status, everyone is alive.
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Captain election:

• candidates: [‘1’, ‘2’, ‘5’, ‘9’, ‘12’]

• non_candidates: [‘3’, ‘4’, ‘6’, ‘7’, ‘8’, ‘10’, ‘11’]

• speech_order: [‘2’, ‘5’, ‘9’, ‘12’, ‘1’]

• still_candidates: [‘2’, ‘9’]

• order_succession_captain: {‘2’:[‘7’, ‘5’], ‘9’:[‘5’, ‘11’]}

• votes: {‘3’: none, ‘4’: none, ‘6’: ‘9’, ‘7’: ‘9’, ‘8’:

‘9’, ‘10’: ‘9’, ‘11’: ‘9’}

• character_distribution: [’UNK’, ’UNK’, ’UNK’, ’UNK’, ’UNK’,

’UNK’, ’UNK’, ’UNK’, ’UNK’, ’UNK’, ’UNK’, ’UNK’, ’UNK’]

• player_alive: [‘alive’, ‘alive’, ‘alive’, ‘alive’, ‘alive’,

‘alive’, ‘alive’, ‘alive’, ‘alive’, ‘Captain’, ‘alive’,

‘alive’, ‘alive’]

The lists candidates and non_candidates record who participated in the

election and who didn’t. In the first vote, only the non_candidates can vote.

If there’s a tie, all the players except the tied candidates can vote. This can

repeat once more before abandoning the election process (without Captain).

The speech_order is also important. Once someones has spoken, he can

not speak again in this turn. So if a player claims himself to be the Seer, and

he declares a accuses in a former position to be bad, then the former player can

no longer argue for himself.

The still_candidates is the list of the players who are still candidates

after every candidate has spoken (i.e. those who did not quit the election). The

Captain should be one of these players.

The order of succession as Captain is an attribute that we have introduced

in the previous part. We note this down for further analysis.

51



The dictionary votes records everyone’s vote. "None" indicates that P3 and

P4 abstained.

In player_alive, we put the item of index 9 to be "Captain" to record that

he is the Captain.

Day1 speech:

• night_death: [ ]

• forbidden: [‘5’]

• speech_order: [‘8’, ‘7’, ‘6’, ‘5’, ‘4’, ‘3’, ‘2’, ‘1’,

‘12’, ‘2’]

• call_vote: [ ]

• votes: {}

• character_distribution: [’UNK’, ’UNK’, ’werewolf’, ’UNK’,

’UNK’, ’UNK’, ’UNK’, ’UNK’, ’UNK’, ’UNK’, ’UNK’, ’UNK’,

’UNK’]

• player_alive: [‘alive’, ‘alive’, ‘suicide’, ‘alive’,

‘alive’, ‘alive’, ‘alive’, ‘alive’, ‘alive’, ‘Captain’,

‘alive’, ‘alive’, ‘alive’]

The forbidden_speaking is in this pattern specifically because in this game

we have "ancient" who can forbid one player from speaking during one turn.

Note that in this example there is no vote, since one werewolf suicided (as

we can see in character_distribution) hence stopping the process.

Day2 speech:

• night_death: [‘3’, ‘9’]

• forbidden: [‘4’]

• speech_order: [‘6’, ‘7’, ‘8’, ‘10’, ‘11’, ‘12’, ‘1’, ‘5’]

• call_vote: [ ]
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• votes: {‘1’: ‘6’, ‘5’: ‘8’, ‘6’: ‘6’, ‘7’: ‘8’, ‘8’:

‘6’, ‘10’: ‘11’, ‘11’: ‘6’, ‘12’: ‘6’}

• character_distribution: [’UNK’, ’UNK’, ’werewolf’, ’UNK’,

’UNK’, ’UNK’, ’UNK’, ’UNK’, ’UNK’, ’UNK’, ’UNK’, ’UNK’,

’UNK’]

• player_alive: [‘alive’, ‘alive’, ‘suicide’, ‘eliminated’,

‘alive’,‘Captain’, ‘executed’, ‘alive’, ‘alive’,

‘eliminated’, ‘alive’, ‘alive’, ‘alive’]

The call_vote is to note down the call of the Captain, he could call everyone

to vote for some players’ execution. His vote count 1.5 points.

To adapt the syntax of json format, we should keep every dictionary with

the same keys, so the final structure of behavior information is like below:

{

"stage":"day2_speech",

"dispositive":{

"character_pattern": {"n_villager": 4, "n_god": 4,

"ordinary_werewolf": 4, "white_wolf": 0, "seer": 1, "witch":

1, "hunter": 0, "idiot": 0, "ancient": 1, "assassin": 1,

"savior": 0, "part-to-kill":"True",

"witch_can_save_herself":"True"},

"night_death":["3","9"],

"forbidden":["4"],

"candidates": [],

"non_candidates":[],

"speech_order":["6", "7", "8", "10", "11", "12", "1", "5"],

"still_candidates": [],

"order_succession_captain": [],

"call_vote":[],

"votes": [{"1": "6", "5": "8", "6": "6" ,"7": "8", "8": "6",

53



"10": "11", "11": "6", "12": "6"}],

"player_alive": ["alive", "alive", "suicide", "eliminated",

"alive", "Captain", "executed", "alive", "alive",

"eliminated", "alive", "alive", "alive"],

"character_distribution":["UNK", "UNK", "werewolf", "UNK",

"UNK", "UNK", "UNK", "UNK", "UNK", "UNK", "UNK", "UNK",

"UNK"]

}

},

The complete behavior records can be found in the Github page.

In the next part, we will try to guess which players are the werewolves, with

help of the retrieved speech information plus the behavior.

3.2 Who’s the werewolf

In this part, we will use all the information extracted in the previous parts

to make an educated guess about who the werewolves are.

A first idea is to assign each player a base likelihood of 1
3 (since we want

4 werewolves among 12 players) and increment or decrement these likelihood

probabilities according to the information we get.

The rules could be as below:

• Someone who is suicided is certainly a werewolf, so we should raise his

probability to 1.

• In a speech turn, if one player claims himself as the Seer and gives another

player a checked good identity, but the latter is proved to be a werewolf,

then the probability of the former should also be 1.

• In a speech turn, those who are marked bad by all the players who claim

themselves as the Seer (in particular by the real Seer) are certainly were-

wolves, their probability should be 1.
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• In a speech turn, especially in the captain election, if two players claim

themselves to be Seers, then there must be a true Seer and a werewolf.

• In a speech turn, the one who receives most attacks should get an incre-

ment in a speech turn, the one who receives most protects should get a

decrement.

• In a speech turn when vote for execution, the one who receives most votes

should get a greater increment.

• In a speech turn when vote for captain election, the one who receives most

votes should get a decrement.

These rules make some sense but they have some issues. Rules 5-8 directly

follow the general sentiment of the players, but the players are often misguided;

rules 1-3 rely on events that are too rare. Instead, of directly following other

players, we want to measure what their sentiment and their subsequent actions

tell about them. For example, if a player in is widely suspected in a game to

be a wolf, this does not necessarily mean he is; however it makes it suspicious

for other players to support this player. Also, the wolves have a tendency to

protect themselves. To incorporate this kind of reasoning, we need to consider

the wolves not individually but collectively.

Therefore the basic idea of our algorithm will be the following. Our goal

is to find 4 werewolves among 12 players, so we look for the likelihood of the

Team Werewolf to be some fixed combination. That is to say, to all the
(
12
4

)
=

495 combinations of 4 players, we will assign a "penalty score" that should be

higher when the probability of Team Werefolf being said combination is lower.

We do this by listing a set of rules: each rule should filter a scenario where

the speech and behavior information somewhat contradicts the hypothesis that

Team Werewolf is considered combination of four players, then increment the

penalty score of that combination.

More specifically, we consider a list wolf_list of four players and its com-

plementary villager_list in range(1,13). We will make the hypothesis that
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these lists accurately represent the situation and test them against the data.

The guiding principle is that the wolves know each other hence should not

accuse themselves of being bad, nor claim villagers to be good. However, follow-

ing such a strategy would rapidly make the other players notice the pattern and

raise suspicion. Consequently, wolves will often find a "scapegoat" among them

and abandon him. This way, if the scapegoat is revealed to be indeed a wolf,

other wolves who had accused him would look good in the eyes of everyone.

We translate this thinking by first writing a function find_scapegoat that

assigns to each item in wolf_list a score proportional to the number of execu-

tion votes or accusation speeches received by other players in wolf_list. The

output of find_scapegoat is then the item with maximum score.

Now, integrating speech and behavior information only from the suspected

wolves would not be enough. The problem is that the villagers are mostly in

the dark because the roles are kept secret. A way of remedying this is to have

lists of players probably_good and probably_bad that try to get the consensus

emerging from the speeches. Then, a villager would mostly want to support the

probably_good players and denounce the probably_bad players. The attitude

of the wolves towards these players is less informational: they have incentives

both to support or denounce those players.

We build the list probably_good as the list of players who have received

approval from a number of players greater than a certain threshold, and similarly

probably_bad is the list of players who have been denounced by a number of

players greater than another threshold.

Now, we have what we need to compute the score of the list wolf_list

(more accurately, the score of the set set(wolf_list)). We start with score =

0, and increment according to the following rules:

• If there is one player that is marked as wolf in character_distribution

(i.e. he suicided, so we are sure of this information) but is not a wolf under

our hypothesis, we raise score to a very large value infty.

• For each (hypothesised) wolf that denounces another wolf that is not the
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scapegoat, we increase score by a constant alpha. If this denunciation is

backed up by a vote for execution, we further increase by another constant

alphavote.

• For each wolf that supports a villager, we increase score by beta. If this

support is backed up by a vote during the Captain election, we further

increase by betavote.

• For each villager that denounces a player in probably_good, we increase

the score by gamma. Similarly, we also have gammavote.

• For each villager that supports a player in probably_bad, we increase the

score by delta. Similarly, we also have deltavote.

Further, the increments in score that result from the speech or behavior of

a wolf that is confirmed by character_distribution (he is absolutely a wolf)

are multiplied by a coefficient absolute_coef.

Also, we need to keep track of the time. Indeed, the more we advance in

the game, the more the players know so the more their decisions carry weight.

Therefore, we have a parameter time_decay, and the score increments that

result from an action (speech or behavior) taken during the day t speech round

is multiplied by time_decay**t (the Captain election speech round corresponds

to t=0). The probably_good and probably_bad lists are also updated for

each round, to account for the fact that they are built from the ever-increasing

information the villagers get.

When all this is done, we aggregate the scores of each of the 495 possible

sets set(wolf_list). The wolf team should be the one having the lowest score.

3.3 Results analysis

For the evaluation of this predictor, we test on the three games S1E101,

S1E102 and S1E103. In order for the evaluation to be impartial, for each eval-

uation game we retrained the SVM classifier on the sentences coming from the

eight other games of the corpus only.
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S1E101 We show the result of S1E101’s Werewolf Team’s prediction and the

most likely top 10 combinations with their penalty score as below. This was

computed using the data of the whole game.

wolf team score

(2, 3, 4, 9) 15.54

(1, 2, 3, 10) 16.0

(2, 3, 9, 10) 16.14

(2, 5, 9, 11) 17.14

(1, 2, 5, 11) 18.9

(2, 3, 5, 11) 18.9

(2, 3, 4, 10) 18.98

(2, 3, 4, 11) 20.0

(2, 4, 9, 11) 20.02

(2, 5, 7, 11) 20.29

In this game, P2, P3, P4 and P11 were the real 4 werewolves. We are glad

to see P11 occur many times even if he is not put in the most probable werewolf

team. But even though our predictor guesses 3 werewolves in 4, the player P9 is

put also in the combination and also appears repeatedly in the other probable

combinations. P9 was in fact the Seer so he was from the beginning in the

opposite team.

We can see how the predicted most probable werewolf team evolves as the

predictor gets progressively, turn by turn, the information from the game each:

turn predicted wolf team score

captain_election (1, 3, 4, 9) 0.0

day1_speech (2, 4, 8, 12) 5.62

day2_speech (1, 2, 4, 8) 9.12

day3_speech (2, 3, 4, 9) 15.54

To account for the imprecision of the method, we also compute a "probabil-

ity" for each individual player to be a werewolf by counting the occurrences in
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the top N = 10 combinations. The lists of the probabilities (player i in index

i-1) are given here for each speech turn (and we remind in the last column of

the top scoring combination) :

turn individual wolf probabilities

predicted

individual

wolves

predicted

wolf team

captain_election [0.2, 0.1, 1.0, 0.8, 0, 0.3, 0.2, 0.2, 0.8, 0.1, 0.1, 0.2] (3,4,9,6) (1, 3, 4, 9)

day1_speech [0, 1.0, 0, 0.8, 0, 0.1, 0.2, 0.7, 0, 0.4, 0.3, 0.5] (2,4,8,12) (2, 4, 8, 12)

day2_speech [0.3, 1.0, 0.3, 0.8, 0, 0.1, 0.1, 0.6, 0.3, 0.3, 0, 0.2] (2,4,8,1/3/9/10) (1, 2, 4, 8)

day3_speech [0.2, 1.0, 0.6, 0.4, 0.4, 0, 0.1, 0, 0.4, 0.3, 0.6, 0] (2,3,11,4/5/9) (2, 3, 4, 9)

In general, individually, at the end the player P2, P3, P11 are the most

probable werewolves, the combination of P2, P3, P4 and P9 is the most probable

werewolf team.

The reality is that P2, P3, P4 and P11 were the real 4 werewolves, among

which P2 suicided at the end of day1_speech, P3 was poisoned by the Witch

and P4 was alive until the final turn. It is satisfying to see that our predictor is

capable to find the werewolves who did not suicide like P3. We are also glad to

see that our predictor has found P4 very early from the beginning to the end,

faring even better than human players.

S1E102 The top predicted combinations at each turn are:

turn predicted wolf team score

captain_election (1, 2, 3, 5) 0.0

pk_speech (2, 3, 10, 11) 0.0

extra_pk (2, 4, 10, 11) 20.84

day1_speech (1, 4, 10, 11) 24.25

day1_lastwords (1, 2, 4, 11) 27.79

day2_speech (1, 4, 10, 11) 24.25

day3_speech (8, 9, 10, 11) 34.53

day4_speech (1, 9, 10, 11) 36.67

The top predicted individuals for each turn, aggregated from the top 10

combinations, are:
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turn individual wolf probabilities

predicted

individual

wolves

predicted

wolf team

captain_election [1.0, 1.0, 0.4, 0, 0.4, 0, 0, 0, 0.4, 0.4, 0.4, 0] (1,2,3/5/9/10/11) (1, 2, 3, 5)

pk_speech [0, 0.6, 0.4, 0.3, 0.5, 0.5, 0.1, 0.5, 0.2, 0.5, 0.4, 0] (2,5/6/8/10) (2, 3, 10, 11)

extra_pk [0.4, 0.4, 0.4, 1.0, 0.4, 0, 0, 0, 0, 0.4, 1.0, 0] (4,11,1/2/3/5/10) (2, 4, 10, 11)

day1_speech [0.6, 0.5, 0.3, 0.8, 0.1, 0.1, 0, 0.1, 0.2, 0.4, 0.9, 0] (11,4,1,2) (1, 4, 10, 11)

day1_lastwords [0.7, 0.6, 0.6, 0.7, 0.7, 0, 0, 0, 0, 0, 0.7, 0] (1,4,5,11) (1, 2, 4, 11)

day2_speech [0.2, 0.2, 0.1, 0.9, 0.2, 0, 0.1, 0.1, 0.1, 1.0, 0.9, 0.2] (10,4,11,1/2/5/12) (1, 4, 10, 11)

day3_speech [0.1, 0.1, 0.1, 0.2, 0.1, 0, 0.1, 0.2, 1.0, 1.0, 0.8, 0.3] (9,10,11,12) (8, 9, 10, 11)

day4_speech [1.0, 0.2, 0.2, 0.2, 0.1, 0.1, 0.1, 0.1, 0.9, 0.9, 0.1, 0.1] (1,9,10,2/3/4) (1, 9, 10, 11)

The real 4 werewolves in S1E102 were P1, P3, P9 and P10. Among them,

P10 suicided in day2_speech, P9 suicided in day3_speech, P1 suicided at the

end. Our predictor has successfully found P1, P3 and P10 early before they

suicided, even better than a part of human players.

S1E103 The top predicted combinations at each turn are:

turn predicted wolf team score

captain_election (1, 4, 6, 7) 0.0

day1_speech (2, 6, 8, 12) 16.14

day2_speech (2, 3, 8, 12) 23.628

The top predicted individuals for each turn, aggregated from the top 10

combinations, are:

turn individual wolf probabilities

predicted

individual

wolves

predicted

wolf team

captain_election [0.3, 0.7, 0.1, 0.8, 0.3, 0.5, 0.3, 0, 0.6, 0.3, 0, 0.1] (4,2,9,6) (1, 4, 6, 7)

day1_speech [0.1, 0.4, 0.3, 0.4, 0.3, 0.5, 0, 1.0, 0.2, 0, 0, 0.8] (8,12,6,2/4) (2, 6, 8, 12)

day2_speech [0.1, 0.3, 1.0, 0.1, 0.1, 0.4, 0, 1.0, 0, 0.1, 0.3, 0.6] (3,8,12,6) (2, 3, 8, 12)

The real werewolves were P3, P8, P11, P12. Among them, P8 suicided

in the day1_speech and P3 suicided in the day2_speech, P11 and P12 were

eliminated during the night. Our predictor has successfully found the hidden

wolf P12 but failed to find P11.
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4 Discussion

In our project, we have built a simple model to predict the werewolves’

identities in the game of the Werewolves of Millers Hollow in order to help build

a chatbot which could react as a real player in the future. We began by simply

suppose that we are in an ideal situation, that is to say, all the input is in form

of text and we play as a villager which only has a task of analyzing, responding

and voting. In this paper, we merely focus on the analyzing part of the chatbot.

In the first step, we tried several machine learning and deep learning meth-

ods by Scikit-Learn and Keras to classify the intent of a single sentence on a

manually annotated dataset, then finally chose the SVM model. In the sec-

ond step, we got help from the Chinese dependency parsing tool HanLP to

extract sentence main parts and to retrieve concrete information for later step.

Finally, using all this extracted information, we simulated the probable were-

wolves combinations then assigned scores to all these hypothetical combinations

by hand-crafted rules, to find the combination of 4 werewolves which is the most

likely to be validated.

We are far from building a real chatbot AI player in this game. Besides

working to build the response and vote parts, we already have much room for

improving our game analysis model. For example, the RNN and LSTM model

costs the most time but receive worst results, which we totally did not expect.

We could add more syntactical features to LSTM model or use word embed-

ding representation in the other methods. Moreover, the precise comprehension

of single sentence has also many errors, especially when facing ambiguous sen-

tences. Another area of improvement is the hand-crafted rules in the last part.

They stem from a very simple modelisation of the game’s most basic and naive

strategies: we did not even go beyond wolves and villagers, when there are

strategies that revolve around the Seer for example (especially in the Captain

election round) that reveal a lot about the players’ team.

Despite all these over-simplifications, we found on our three test games that

the prediction is surprisingly good, in fact better than most of the human play-
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ers in those game (and those were seasoned Werewolf players!). We expect

that exploring the numerous possibilities of improvement could yield even more

remarkable results.

All comments are welcome on the Github page of the project, where all the

data and scripts are also available: https://github.com/ExeCuteRunrunrun/

loup-garou

62

https://github.com/ExeCuteRunrunrun/loup-garou
https://github.com/ExeCuteRunrunrun/loup-garou


Appendices

A Tools and libraries

The following tools and libraries were used for this project:

Python 3.6.3

ipython 6.1.0

jupyter 1.0.0

HanLP 0.1.41 (python interface pyHanLP)

jieba 0.39

Keras 2.0.6 (with tensorflow 1.0.0 back end)

Pandas 0.20.3

Scikit-Learn 0.19.1

B Glossary of Werewolf game-specific expressions

Here is a list of the most common expressions in use during the in-game

discussions, along with their pinyin pronunciation, their literal translation and

their definition.

神神神民民民：：：shenmin divine villagers; villagers who have special abilities

狼狼狼人人人/狼狼狼/匪匪匪：：：langren/lang/fei werewolves; werewloves
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自自自爆爆爆：：：zibao explode; werewolf suicide

公公公投投投权权权：：：gongtouquan public vote; vote to decide who is to be executed

警警警徽徽徽流流流：：：jinghuiliu order of succession as Captain; if the Captain is the Seer,
he can verify the identity of one person every night, if this person is good,
he will pass his badge to this person when he dies, and if not, to the next
one in the jinghuiliu

上上上警警警：：：shangjing go to captain election; participate in the captain election

退退退水水水：：：tuishui go back to water; quit the election

警警警上上上：：：jingshang in the election; ex. there are now two Seers in the election

警警警下下下：：：jingxia out of the election; the players who didn’t participate in the
election from beginning

归归归票票票权权权：：：guipiaoquan right of reuniting votes; call the others to vote against
someone

验验验/验验验人人人/查查查验验验：：：yan/yanren/chayan verify identity; verify a player’s identity
during the night to know wether he’s good or bad

查查查杀杀杀：：：chasha verify kill; verify someone’s idententity to discover he’s a wolf

金金金：：：jinshui golden water; good identification, verify someone to discover he’s
a villager

银银银水水水：：：yinshui silver water; the one who is saved by the Witch (hence he is
probably good, except if he is a suicide wolf)

铜铜铜水水水：：：tongshui copper water; the one who is protected by the Savior

挂挂挂身身身份份份：：：guashenfen hang on his identity; might have a functional identity, ie
divine villager or werewolf

跳跳跳/起起起跳跳跳：：：tiao/qitiao jump out; claim oneself to be some divine villager (eg.
tiao the Seer means to claim oneself as the Seer)

穿穿穿衣衣衣服服服：：：chuanyifu wear the cloth of. . . ; declare oneself as some divine villager

悍悍悍跳跳跳：：：hantiao bold jump; when a wolf declares himself as a divine villager,
often the Seer

冲冲冲/冲冲冲票票票/绑绑绑票票票：：：chong/chongpiao/bangpiao bind the votes; since the were-
wolves are a group, they can reunite all their votes to vote someone to be
executed, it is risky behavior because they may then be exposed

民民民及及及民民民以以以下下下：：：minjiminyixia villager and below villager; equal to or worse
than ordinary villager, ie either an ordinary villager or a werewolf
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狼狼狼面面面：：：langmian werewolfness; the probability of being a werewolf

聊聊聊爆爆爆：：：liaobao explode by talking; a werewolf who exposes himself by mistake

深深深水水水狼狼狼：：：shenshuilang deep water wolf; a werewolf who hides very well

铁铁铁狼狼狼：：：tielang iron wolf; someone who is certainly a wolf

金金金刚刚刚狼狼狼：：：jinganglang diamond wolf; a werewolf whom everyone thinks confi-
dently is good

隐隐隐狼狼狼：：：yinlang hiding wolf; a hiding werewolf

怂怂怂狼狼狼：：：songlang weak wolf; a werewolf who is unconfident and afraid, a game
where no wolf participates in the captain election is also called a weak
game

刀刀刀：：：dao knife; kill

挨挨挨刀刀刀：：：aidao get killed

自自自刀刀刀：：：zidao kill oneself; when the werewolves at night choose to kill one of
them so that he could get the Witch to save him and make everyone think
he is good

卖卖卖队队队友友友：：：maiduiyou sell out one’s companions; a werewolf wo denounces the
other wolves in order to appear as good

闭闭闭眼眼眼玩玩玩家家家：：：biyanwanjia player with closed eyes; the players who do not open
their eyes in the night, ie the ordinary villagers

反反反水水水：：：fanshui back water; when player A claims B to be good (through jin-
shui), but player B then publicly suspects A to be a werewolf

反反反水水水立立立警警警：：：fanshuilijing back water and support the Captain; to fanshui and
support another candidate to the captain election

表表表水水水：：：biaoshui express water; claim oneself to be good

划划划水水水：：：huashui paddle water; have nothing important to say as if knowing
nothing

排排排水水水：：：paishui drain water; guess all the good identities (and the wolves by
elimination)

愚愚愚/鱼鱼鱼/愚愚愚民民民：：：yu/yu/yumin silly/fish/silly villager; the villager who does not
trust the real divine villagers and who helps the werewolves

暴暴暴民民民：：：baomin mob; the villager who votes for the real divine’s execution, too
confident in his wrong judgement
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警警警左左左/警警警右右右：：：jingzuo/jingyou left/right hand of the captain; the Captain
chooses the order of speeches, from his left hand then clockwise, or his
right hand then countclockwise

对对对跳跳跳：：：duitiao jump against each other; two players claim a same divine iden-
tity

扛扛扛推推推：：：kangtui unite everyone to push out; the werewolves accuse a villager to
be bad, and all the others don’t trust this player either, so the werewolves
succesfully call the villager to be executed

拍拍拍/踩踩踩/打打打：：：pai/ca/da criticize; accuse someone or mark him as werewolf

出出出：：：chu out; vote someone out

挂挂挂：：：gua hang on; temporarily label someone as an option for the execution
vote

飞飞飞：：：fei fly on; decide to vote for/against someone

前前前置置置位位位/后后后置置置位位位：：：qianzhiwei/houzhiwei previous/next in speech order

站站站边边边：：：zhanbian stand by one side; support one player

和和和认认认识识识：：：renshi know each other; . . . and . . . are wolves (only wolves can see
each other’s identity)

吃吃吃信信信息息息：：：chixinxi eat information; get information in the night, so that either
he is a divine villager, or a werewolf

做做做好好好/做做做坏坏坏：：：zuohao/zuohuai make good/bad; take an action that makes
someone seem good/bad

心心心路路路历历历程程程：：：xinlulicheng one’s various thoughts (during the game)

自自自证证证身身身份份份：：：zizhengshenfen prove one’s good identity; use one’s special ability
to prove one’s good identity (only divine villagers can do this)

焦焦焦点点点牌牌牌：：：jiaodianpai focus point; the most controversial player
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